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Postulates for a Poisson Process

1. Events in non-overlapping time intervals are 
independent.

2. For “small” ∆t :
a) Pr [1 arrival in ∆t ] ≈ λ∆t
b) Pr [more than 1 arrival in ∆t ] ≈ 0
c) Pr [no arrivals in ∆t ] ≈ 1–λ∆t

t     t+ ∆t

∆t
t

0
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Poisson Process
Arrivals:

Let N(t1,t2) be the number of arrivals in the interval [t1, t2)

Let N(t) be the number of arrivals in the interval [0, t), i.e.,  N(t) =N(0,t)

• Homogeneous in time:  N(t) = N(0, t) = N(t1, t2), where t = t2 – t1

( ) ( )Pr , 0,1,2,
!

k
tt
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• If [t1, t2] and [t3, t4] are non-overlapping, N(t1, t2) and N(t3, t4) are
independent.

• For t2 > t1, N(t1, t2) = N(0, t2) – N(0, t1)

• Mean, autocovariance, and autocorrelation functions follow (see text)
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Poisson Process (cont’d.)
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Random Telegraph Signal

N(t) changes sign with each arrival of the Poisson process of rate λ

( ) ( )Pr 0 1 , Pr 0 1 1N p N p= = = − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

time
X2 X3 X5X1 X4

N(t)

1

−1
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PMF of N(t)

Even number by events:

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

Pr 1 Pr 1 0 1 Pr 0 1

Pr 1 0 1 Pr 0 1

Pr 1 Pr 1 0 1 Pr 0 1

Pr 1 0 1 Pr 0 1

N t N t N N

N t N N

N t N t N N

N t N N
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Odd number of events:
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PMF of N(t)  (continued)

We then have

( ) ( ) ( )( )

( ) ( ) ( )

2 2
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Mean, autocorrelation, and autocovariance functions

( ) ( ) ( ) ( ) ( ) ( )
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Markov Processes: Discrete-Time Markov Chain

2

3
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0

Process in state 3

X[n]

n

…

Process in state 2

Process in state 0
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Discrete-Time Markov Chain

Let X[n] be a discrete-time discrete-magnitude random signal.  If it satisfies

1 2 1

1 1 2

Pr [ ] [ 1] , [ 2] , , [1] , [0]

Pr [ ] [ 1] for all , , , , ,
n n

n

X n j X n i X n i X i X i

X n j X n i n j i i i
−⎡ = − = − = = = ⎤⎣ ⎦

= ⎡ = − = ⎤⎣ ⎦

"

"

then X[n] is called a discrete-time Markov chain.

State transition probabilities: State transition matrix:

1
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Example:  Consider a 3-state Markov chain

State transition probabilities: State transition matrix:

State transition diagram:

00 01

10 11

20 21

0.3 0.4
0.2 0.5
0.4 0.4

p p
p p
p p

= =
= =
= =

0.3 0.4 0.3
0.2 0.5 0.3
0.4 0.4 0.2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P

210
−1 +10

0.40.3 0.20.3

0.3

0.4

0.4

0.5

0.2

{ }1, 0, 1− +
state 0 state 1 state 2
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State Probabilities (not transition probabilities)

The state probability vector at any discrete time ‘k’ is given by

Then the state vector at time ‘k’ is given by

[ ]
0

1
1

0

1

[ ]
[ ]

[ ] 1 for all
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i
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p n
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−
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⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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#
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Limiting-State Probabilities
The limiting-state probability vector

( )
1

0

lim [ ] lim [0] 1
mnT

in n i

n p
−

→∞ →∞
=

= = ⇐ =∑p p P p

Assuming that the limiting-state probabilities exist, we have

T =P p p

( )T − =P I p 0

Solve for           (P is known).

eigenequation
• eigenvalue = 1
• eigenvector = 

p

p
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Example:

(a)  Find      .

( )( )90.2 0.6 0.002=

(b)  Find the probability of a run of ten values of state 0

1
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0.6 0.4
, 1
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p
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⎡ ⎤
= =⎢ ⎥

⎣ ⎦
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The queue can be described by a continuous-time Markov chain with
a possibly infinite number of states.

The Markov random process looks like:

Continuous-Time Markov Chain

1−λ∆t

1−(λ+µ)∆t

µ∆t

λ∆t

10

µ∆t

λ∆t

k

µ∆t

λ∆t

µ∆t

λ∆t

. . .. . .

1−(λ+µ)∆t

NQ(t)

t

Arrival
Poisson (λ) queue Service

Time
exponential (µ)

server Departure

Simple server system
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The server can be described by a continuous-time Markov chain with
just two states.

The Markov random process looks like:

1−λ∆t 1−µ∆t

µ∆t

λ∆t

10

t

NS(t)

Continuous-Time Markov Chain (cont’d.)
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Let N(t) be a continuous-time Markov chain.

Transition Rates

rij are rates of the Poisson process defining transitions from state i to
state j.

A transition rate diagram is a state diagram with the rates indicated.  
Note that the rates do not represent probabilities directly and there are 
no self-loops.

Example for the service process:

Transition Rate Diagram

10
r01 = λ

r10 = µ
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Now consider a more general Markov chain.  A typical state has
multiple transitions to and from other states:

r2j

j

rj3

r1jr3j

rj1 rj2

Time-Dependent State Probabilities

Define  pj (t) = Pr [N(t) = j].  Then,

( ) ( ) ( )
1 1

0 0

1
m m

j j j j

j j

p t t r t p t r t p t
− −

= =
≠ ≠

⎛ ⎞
⎜ ⎟+ ∆ = ∆ ⋅ + − ∆⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑A A A
A A
A A
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Rearranging:

where

( ) ( ) ( )
1 1

0 0

1
m m

j j j j

j j

p t t r t p t r t p t
− −

= =
≠ ≠

⎛ ⎞
⎜ ⎟+ ∆ = ∆ ⋅ + − ∆⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑A A A
A A
A A

In the limit:

(Chapman-Kolmogorov equation for 
continuous-time Markov chains)

( ) ( ) ( ) ( )
1 1

0 0

m m
j j

j j j

j j

p t t p t
r p t r p t

t

− −

= =
≠ ≠

⎛ ⎞+ ∆ − ⎜ ⎟= − ⎜ ⎟∆ ⎜ ⎟
⎝ ⎠

∑ ∑A A A
A A
A A

( ) ( )
1

0

m
j

j
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r p t

dt

−

=

= ∑ A A
A

1

0

m

jj j

j

r r
−

=
≠

= −∑ A
A
A

Time-Dependent State Probabilities (cont’d.)
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Beginning with the Chapman-Kolmogorov equation:

For steady-state probability flow-rate balance, let:

( ) ( )
1

0

0,1, , 1
m

j
j

dp t
r p t j m

dt

−

=

= = −∑ A A
A

"

Global Balance Equations

( ) ( )

1

0

0

0 0,1, , 1

j
j j

m

j

dp t
t p t p

dt

r p j m
−

=

→ ∞ ⇒ → ⇒ →

∴ = = −∑ A A
A

"
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Probability flow-rate balance equation:

1

0

0 0,1, , 1
m

jr p j m
−

=

= = −∑ A A
A

"

Thus
1 1

0 0
0

m m

j j j

j j

r p p r
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≠ ≠

− =∑ ∑A A A
A A
A A

1 1

0 0
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j j j

j j

p r r p
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= =
≠ ≠

=∑ ∑A A A
A A
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Now recall that,
1

0

m

jj j

j

r r
−

=
≠

= −∑ A
A
A

1 j−1 j j+1 …… …A

r jA

rjA

rj j+1,

rj j, +1rj j−1,

rj j, −1

r j1

rj1

Global Balance Equations (cont’d.)
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Example:

For State 0:    λ p0 = µ p1
(Global balance equations)

For State 1:    µ p1 = λ p0

Also use:        p0 + p1 = 1

0 1;p pµ λ
λ µ λ µ

= =
+ +

to find:

10
r01 = λ

r10 = µ
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Numerical Example:

0 1 1 0 0

0 1 0 0

0 1

5
6

51 1
6

6 5,
11 11

p p p p p

p p p p

p p

λλ µ
µ

= ⇒ = =

+ = ⇒ + =

= =

10
λ=10 pps

µ=12 pps
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N(t):  Number of packets in system T:  Time spent in system

Nq (t):  Number of packets in queue      W:  Waiting time in queue

Ns (t):  Number of packets in service     S:  Service time

† Shorthand notation:  a/b/c/d

Arrival process/Service time distribution/Number of servers/Buffer size

Queuing System:  M/M/K†

1

2

K

Ns(t)

Nq(t)

N(t) = A(t) - D(t) 

W

S

Ti = Di- Si
....

A(t)

ith packet arrives
at time Si

ith packet departs
at time Di

D(t)

Queuing System

Queue

Server(s)
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Single Server Queuing System:  M/M/1 System

• Job arrival is a Poisson process and the interarrival time τ is
exponentially distributed with λ as the parameter

• Job service time S is exponentially distributed with µ as the parameter

( ) ( )

( )

Pr , 0,1,2,
!

, 0

n
tt

A t n e n
n

f e

λ

λτ

λ

τ λ ττ

−

−

= = =⎡ ⎤⎣ ⎦

= ≥

"

( ) , 0s
Sf s e sµµ −= ≥
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Assume an infinitely long queue  (birth-death queue)

, 1 , 1, , 0,1,2,j j j jr r jλ µ+ −= = = "with state transition rates:

Global Balance Equations (by observation)

State 0: 0 1 0p pλ µ− =

( ) 1 0 2p p pλ µ λ µ+ = +

State n:

State 1:

( ) 1 1n n np p pλ µ λ µ− ++ = +
"

0 1 2 n n+1… …
λ

µ µµ

λ λ

M/M/1 System (cont’d.)

0 1p pλ µ=

1 2 0 1 0p p p pλ µ λ µ− = − =

1 1 0n n n np p p pλ µ λ µ+ −− = − =
"
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1or 1,2,3, , , 1,j jp p j n nλ
µ −= = +" "

By induction, the state probabilities:

0; 0,1,2,3,n

n
p p nλ

µ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

"

M/M/1 System (cont’d.)

0 1 0p pλ µ− =

1 2 0p pλ µ− =

1 0n np pλ µ +− =

"

Global balance equations
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This defines a PMF for the state of the queue

[ ] [ ]f PrN nn N n p= = =

0 1 2 3 4 j
" " n

0p
1p

2p
3p

4p jp

M/M/1 System (cont’d.)

0; 0,1,2,3, wheren
np p n λρ ρ

µ
= = ="Rewrite:



8-28 © M. Tummala & C. W. Therrien 2004

[ ] [ ]f PrN nn N n p= = =

To determine the unknown p0 use:

for ρ < 1, i.e., λ < µ,  thus  p0 = 1 – ρ and

0 0 0
0 0 0

1 1
1

j j
j

j j j

p p p pρ ρ
ρ

∞ ∞ ∞

= = =

= = =
−∑ ∑ ∑

[ ] ( )f 1 , 0,1,2,n
N nn p nρ ρ= = − = "

Thus N, which represents the number of jobs in the system, is a type 0

geometric random variable.  ρ is called the utilization factor (0 < ρ < 1).

0 1 2 3 4 j
" " n

0p
1p

2p
3p

4p jp

M/M/1 System (cont’d.)
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Some Important Formulas

1. Probability of long queues:

[ ] ( ) ( )

( )

0 0

0
0

1 1

0
0 0

Pr 1 1

11 1
1

n n
j j

j j

n
n

N n ρ ρ ρ ρ

ρρ ρ
ρ

− −

= =

< = − = −

−
= − ⋅ = −

−

∑ ∑

[ ] 0
0Pr nN n ρ≥ =
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2. Average number of jobs in the system:

( )
1

E N t ρ
ρ

=⎡ ⎤⎣ ⎦ −
(mean of the geometric PMF)

10 ρ →

][NE

Important Formulas (cont’d.)
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Little’s Formula

For systems that reach equilibrium, the average number of 
jobs N in a system is

E[N(t)] = λ E[T]
where E[T] is the average time spent in the system by a job.

ith job
arrives at
time Si

ith job
departs at
time Di

Queuing
System

A(t)  N(t) = A(t) −D(t)                    D(t)

Ti = Di −Si
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where W is the waiting time in the queue and S is the service time
(note that  E[S] = 1/µ).

Little’s formula can be extended to other quantities.  Let T W S= +

( ) [ ]qE N t E Wλ⎡ ⎤ =⎣ ⎦

( ) [ ] /SE N t E Sλ λ µ ρ= = =⎡ ⎤⎣ ⎦

[ ]
K

E S
K K

λ λρ
µ

= =

• The average number of jobs in the queue is given by

• The average number of jobs in service or utilization of a single
server system is

• The utilization of a K-server system is then given by

(1)

(2)

where E[S] is the average service time. 

Comments on Little’s Formula
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• The average total delay experienced by a job in a single server
system

(3)

[ ] ( )

[ ]

from little's formula

1 1 Note
1 1

1

E N t
E T

E T

λ
ρ λ µ λρ

λ ρ λ λ µ µ

µ λ

⎡ ⎤⎣ ⎦= ←

= ⋅ = ⋅ ← =
− −

=
−

Comments (cont’d.)
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• The average waiting time in the queue

(4)[ ] [ ] [ ] ( ) ( )
2

1 1
E W E T E S ρ ρ ρ

λ ρ λ λ ρ
= − = − =

− −

• The average number of jobs in the queue

(5)

[ ]
2

Little's formula restated

1

qE N E Wλ

ρ
ρ

⎡ ⎤ = ←⎣ ⎦

=
−

Comments (cont’d.)
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Example:

Consider an M/M/1 system

(a)  Find  Pr [N(t) > 10]

( ) ( ) 11Pr 10 Pr 11N t N t ρ> = ≥ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

(b)  Find the maximum allowable arrival rate, λ, if we require
Let µ = 4 per second( ) 3Pr 10 10 .N t −≥ =⎡ ⎤⎣ ⎦

( ) 10 3

0.3

0.3

Pr 10 10

10

10 2

N t ρ

λρ
µ

λ µ

−

−

−

≥ = =⎡ ⎤⎣ ⎦

∴ = =

= ≅
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(c)  Find the minimum allowable service rate, µ, if we require
Let λ = 4 per second( ) 5Pr 10 10 .N t −≥ =⎡ ⎤⎣ ⎦

( ) 10 5

0.5

0.5

Pr 10 10

10

13
10

N t ρ

λρ
µ
λµ

−

−

−

≥ = =⎡ ⎤⎣ ⎦

∴ = =

= ≅

Example (cont’d.):
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Example: M/M/1 system

Packets arrive at a network router at a rate λ = 2×105 per sec.

The service is performed by the router at a rate µ = 2.5 ×105 per sec.

The utilization factor,

PMF,

(a)  Find the mean number of jobs in the system, E[N(t)].

( )f [ ] 1 , 0.n
N n nρ ρ= − ≥

( ) 0.8 4
1 1 0.8

E N t ρ
ρ

= = =⎡ ⎤⎣ ⎦ − −

5
4

5.2
2

===
µ
λρ
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(b)  Average total delay in the system.  From Little’s formula

(c)  What value of λ would double E[T] in (b)?

(d)  What is the utilization?   (0.9)

Example (cont’d.):

[ ] [ ] s20
102
4)(

5 µ
λ

=
×

==
tNETE

[ ]
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The state transition diagram for an M/M/k system
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M/M/k System

The state probabilities of this queue can be written as

where ρ is defined as ρ = λ/kµ.
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By substituting for pk, we have

The probability of the 0th state is obtained as follows:
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M/M/k System (cont’d.)
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The probability that an arriving job is forced to wait because all k-servers
are busy is known as the Erlang C formula:

The average number of customers in the queue is given by
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M/M/k System (cont’d.)
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From Little’s formula: [ ]
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The system delay is then given by:

By using Little’s formula, the total jobs in the system can then be
obtained as
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M/M/k System (cont’d.)
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• Continuous-time Markov chain
– M/M/1 queue

– M/M/k queue
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Example:

Compare queuing systems:

A.  M/M/1 system with one 100 GIPS server

λ = 5000 per sec,  µ = 6000 per sec

B.  Ten M/M/1 systems each with a 10 GIPS server

with  λ = 500 per sec,  µ = 600 per sec

The mean delay in the 100 GIPS system is 1/10th that of the
system with ten 10 GIPS servers.
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C.  An M/M/10 system with a 10 GIPS server:

Example (cont’d.):
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